Dans les techniques d’évaluation des flux de trésorerie actualisés (DCF), la valeur de l’action est estimée en fonction de la valeur actualisée d’une certaine mesure des flux de trésorerie. Les flux de trésorerie disponibles pour l’entreprise (FCFF) sont généralement décrits comme les flux de trésorerie après coûts directs et avant tout paiement aux fournisseurs de capitaux.
Espace pour les utilisateurs payants
Essayer gratuitement
Abiomed Inc. pages disponibles gratuitement cette semaine :
- Bilan : actif
- Ratios d’évaluation des actions ordinaires
- Valeur d’entreprise (EV)
- Modèle d’évaluation des immobilisations (CAPM)
- Modèle d’actualisation des dividendes (DDM)
- Ratio de liquidité actuel depuis 2005
- Rapport cours/valeur comptable (P/BV) depuis 2005
- Ratio prix/chiffre d’affaires (P/S) depuis 2005
- Analyse du chiffre d’affaires
- Cumul des régularisations
Nous acceptons :
Valeur intrinsèque du stock (résumé de l’évaluation)
Abiomed Inc., prévision de flux de trésorerie disponible à l’entreprise (FCFF)
en milliers de dollars américains, à l’exception des données par action
Année | Valeur | FCFFt ou valeur terminale (TVt) | Calcul | Valeur actualisée à |
---|---|---|---|---|
01 | FCFF0 | |||
1 | FCFF1 | = × (1 + ) | ||
2 | FCFF2 | = × (1 + ) | ||
3 | FCFF3 | = × (1 + ) | ||
4 | FCFF4 | = × (1 + ) | ||
5 | FCFF5 | = × (1 + ) | ||
5 | Valeur terminale (TV5) | = × (1 + ) ÷ ( – ) | ||
Valeur intrinsèque du capital Abiomed | ||||
Moins: Obligation au titre d’un contrat de location-acquisition (juste valeur) | ||||
Valeur intrinsèque d’ Abiomed actions ordinaires | ||||
Valeur intrinsèque des actions ordinaires Abiomed (par action) | ||||
Cours actuel de l’action |
D’après le rapport : 10-K (Date du rapport : 2022-03-31).
Démenti!
L’évaluation est basée sur des hypothèses standard. Il peut exister des facteurs spécifiques pertinents pour la valeur de l’action et omis ici. Dans ce cas, la valeur réelle du stock peut différer considérablement de l’estimation. Si vous souhaitez utiliser la valeur intrinsèque estimée de l’action dans le processus de prise de décision d’investissement, faites-le à vos risques et périls.
Coût moyen pondéré du capital (WACC)
Valeur1 | Poids | Taux de rendement requis2 | Calcul | |
---|---|---|---|---|
Capitaux propres (juste valeur) | ||||
Obligation au titre d’un contrat de location-acquisition (juste valeur) | = × (1 – ) |
D’après le rapport : 10-K (Date du rapport : 2022-03-31).
1 US$ en milliers
Capitaux propres (juste valeur) = Nombre d’actions ordinaires en circulation × Cours actuel de l’action
= × $
= $
Obligation de location-acquisition (juste valeur). Voir les détails »
2 Le taux de rendement des capitaux propres requis est estimé à l’aide du MEDAF. Voir les détails »
Taux de rendement requis sur la dette. Voir les détails »
Le taux de rendement requis sur la dette est après impôt.
Taux d’imposition effectif effectif estimé (moyen)
= ( + + + + + ) ÷ 6
=
WACC =
Taux de croissance du FCFF (g)
D’après les rapports : 10-K (Date du rapport : 2022-03-31), 10-K (Date du rapport : 2021-03-31), 10-K (Date du rapport : 2020-03-31), 10-K (Date du rapport : 2019-03-31), 10-K (Date du rapport : 2018-03-31), 10-K (Date du rapport : 2017-03-31).
2022 Calculs
2 Charges d’intérêts, après impôt = Charges d’intérêts × (1 – EITR)
= × (1 – )
=
3 EBIT(1 – EITR)
= Revenu net + Charges d’intérêts, après impôt
= +
=
4 RR = [EBIT(1 – EITR) – Charges d’intérêts (après impôts) et dividendes] ÷ EBIT(1 – EITR)
= [ – ] ÷
=
5 ROIC = 100 × EBIT(1 – EITR) ÷ Total du capital
= 100 × ÷
=
6 g = RR × ROIC
= ×
=
Taux de croissance du FCFF (g) impliqué par le modèle à une seule étape
g = 100 × (Total du capital, juste valeur0 × WACC – FCFF0) ÷ (Total du capital, juste valeur0 + FCFF0)
= 100 × ( × – ) ÷ ( + )
=
où:
Total du capital, juste valeur0 = Juste valeur actuelle de la dette et des capitaux propres Abiomed (US$ en milliers)
FCFF0 = l’année dernière, le flux de trésorerie disponible d’Abiomed pour l’entreprise (US$ en milliers)
WACC = Coût moyen pondéré du capital Abiomed
Année | Valeur | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 et suivants | g5 |
où:
g1 est impliqué par le modèle PRAT
g5 est impliqué par le modèle à une seule étape
g2, g3 et g4 sont calculés à l’aide d’une interpoltion linéaire entre g1 et g5
Calculs
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=