Dans les techniques d’évaluation des flux de trésorerie actualisés (DCF), la valeur de l’action est estimée en fonction de la valeur actualisée d’une certaine mesure des flux de trésorerie. Les dividendes sont la mesure la plus propre et la plus simple des flux de trésorerie, car il s’agit clairement de flux de trésorerie qui vont directement à l’investisseur.
Espace pour les utilisateurs payants
Essayer gratuitement
Trane Technologies plc pages disponibles gratuitement cette semaine :
- Bilan : passif et capitaux propres
- Structure du bilan : actif
- Structure du bilan : passif et capitaux propres
- Analyse des ratios de liquidité
- Analyse des ratios d’activité à court terme
- Valeur d’entreprise (EV)
- Ratio d’endettement par rapport aux capitaux propres depuis 2005
- Ratio cours/résultat d’exploitation (P/OP) depuis 2005
- Analyse du chiffre d’affaires
- Cumul des régularisations
Nous acceptons :
Valeur intrinsèque du stock (résumé de l’évaluation)
Année | Valeur | DPSt ou valeur terminale (TVt) | Calcul | Valeur actualisée à |
---|---|---|---|---|
0 | DPS01 | |||
1 | DPS1 | = × (1 + ) | ||
2 | DPS2 | = × (1 + ) | ||
3 | DPS3 | = × (1 + ) | ||
4 | DPS4 | = × (1 + ) | ||
5 | DPS5 | = × (1 + ) | ||
5 | Valeur terminale (TV5) | = × (1 + ) ÷ ( – ) | ||
Valeur intrinsèque des actions ordinaires de Trane Technologies (par action) | ||||
Cours actuel de l’action |
D’après le rapport : 10-K (Date du rapport : 2022-12-31).
1 DPS0 = Somme des dividendes par action de Trane Technologies ’année dernière. Voir les détails »
Démenti!
L’évaluation est basée sur des hypothèses standard. Il peut exister des facteurs spécifiques pertinents pour la valeur de l’action et omis ici. Dans ce cas, la valeur réelle du stock peut différer considérablement de l’estimation. Si vous souhaitez utiliser la valeur intrinsèque estimée de l’action dans le processus de prise de décision d’investissement, faites-le à vos risques et périls.
Taux de rendement requis (r)
Hypothèses | ||
Taux de rendement de LT Treasury Composite1 | RF | |
Taux de rendement attendu du portefeuille de marché2 | E(RM) | |
Risque systématique de Trane Technologies actions ordinaires | βTT | |
Taux de rendement requis sur les actions ordinaires de Trane Technologies3 | rTT |
1 Moyenne non pondérée des rendements des offres sur tous les bons du Trésor américain à coupon fixe en circulation qui ne sont ni échus ni remboursables par anticipation dans moins de 10 ans (indicateur du taux de rendement sans risque).
3 rTT = RF + βTT [E(RM) – RF]
= + [ – ]
=
Taux de croissance du dividende (g)
Taux de croissance des dividendes (g) impliqué par le modèle PRAT
Trane Technologies plc, modèle PRAT
D’après les rapports : 10-K (Date du rapport : 2022-12-31), 10-K (Date du rapport : 2021-12-31), 10-K (Date du rapport : 2020-12-31), 10-K (Date du rapport : 2019-12-31), 10-K (Date du rapport : 2018-12-31).
2022 Calculs
1 Taux de rétention = (Bénéfice net attribuable à Trane Technologies plc – Dividendes en espèces déclarés) ÷ Bénéfice net attribuable à Trane Technologies plc
= ( – ) ÷
=
2 Ratio de marge bénéficiaire = 100 × Bénéfice net attribuable à Trane Technologies plc ÷ Chiffre d’affaires net
= 100 × ÷
=
3 Ratio de rotation de l’actif = Chiffre d’affaires net ÷ Total de l’actif
= ÷
=
4 Ratio d’endettement financier = Total de l’actif ÷ Total des capitaux propres de Trane Technologies plc
= ÷
=
5 g = Taux de rétention × Ratio de marge bénéficiaire × Ratio de rotation de l’actif × Ratio d’endettement financier
= × × ×
=
Taux de croissance des dividendes (g) impliqué par le modèle de croissance de Gordon
g = 100 × (P0 × r – D0) ÷ (P0 + D0)
= 100 × ($ × – $) ÷ ($ + $)
=
où:
P0 = Prix actuel de Trane Technologies ’action ordinaire
D0 = Somme des dividendes par action de Trane Technologies année dernière
r = taux de rendement requis sur les actions ordinaires de Trane Technologies
Année | Valeur | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 et suivants | g5 |
où:
g1 est impliqué par le modèle PRAT
g5 est impliqué par le modèle de croissance de Gordon
g2, g3 et g4 sont calculés à l’aide d’une interpoltion linéaire entre g1 et g5
Calculs
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=