Dans les techniques d’évaluation des flux de trésorerie actualisés (DCF), la valeur du stock est estimée sur la base de la valeur actuelle d’une certaine mesure du flux de trésorerie. Les flux de trésorerie disponibles sur les capitaux propres (FCFE) sont généralement décrits comme les flux de trésorerie disponibles pour le détenteur d’actions après les paiements aux détenteurs de titres de créance et après prise en compte des dépenses pour maintenir la base d’actifs de la société.
Espace pour les utilisateurs payants
Essayer gratuitement
HP Inc. pages disponibles gratuitement cette semaine :
- État des résultats
- État du résultat global
- Bilan : passif et capitaux propres
- Structure du bilan : actif
- Structure du bilan : passif et capitaux propres
- Analyse des ratios de liquidité
- Rapport valeur/ EBITDA d’entreprise (EV/EBITDA)
- Modèle d’évaluation des immobilisations (CAPM)
- Ratio d’endettement par rapport aux capitaux propres depuis 2005
- Ratio cours/bénéfice net (P/E) depuis 2005
Nous acceptons :
Valeur intrinsèque du stock (résumé de l’évaluation)
HP Inc., prévision du flux de trésorerie disponible sur les capitaux propres (FCFE)
en millions de dollars américains, à l’exception des données par action
Année | Valeur | FCFEt ou valeur terminale (TVt) | Calcul | Valeur actualisée à |
---|---|---|---|---|
01 | FCFE0 | |||
1 | FCFE1 | = × (1 + ) | ||
2 | FCFE2 | = × (1 + ) | ||
3 | FCFE3 | = × (1 + ) | ||
4 | FCFE4 | = × (1 + ) | ||
5 | FCFE5 | = × (1 + ) | ||
5 | Valeur terminale (TV5) | = × (1 + ) ÷ ( – ) | ||
Valeur intrinsèque de HP actions ordinaires | ||||
Valeur intrinsèque de HP ’action ordinaire (par action) | ||||
Cours actuel de l’action |
D’après le rapport : 10-K (Date du rapport : 2018-10-31).
Démenti!
L’évaluation est basée sur des hypothèses standard. Il peut exister des facteurs spécifiques pertinents pour la valeur de l’action et omis ici. Dans ce cas, la valeur réelle du stock peut différer considérablement de l’estimation. Si vous souhaitez utiliser la valeur intrinsèque estimée de l’action dans le processus de prise de décision d’investissement, faites-le à vos risques et périls.
Taux de rendement requis (r)
Hypothèses | ||
Taux de rendement de LT Treasury Composite1 | RF | |
Taux de rendement attendu du portefeuille de marché2 | E(RM) | |
Risque systématique lié à HP actions ordinaires | βHPQ | |
Taux de rendement requis pour les actions ordinaires HP3 | rHPQ |
1 Moyenne non pondérée des rendements des offres sur tous les bons du Trésor américain à coupon fixe en circulation qui ne sont ni échus ni remboursables par anticipation dans moins de 10 ans (indicateur du taux de rendement sans risque).
3 rHPQ = RF + βHPQ [E(RM) – RF]
= + [ – ]
=
Taux de croissance du FCFE (g)
D’après les rapports : 10-K (Date du rapport : 2018-10-31), 10-K (Date du rapport : 2017-10-31), 10-K (Date du rapport : 2016-10-31), 10-K (Date du rapport : 2015-10-31), 10-K (Date du rapport : 2014-10-31), 10-K (Date du rapport : 2013-10-31).
2018 Calculs
1 Taux de rétention = (Bénéfice net – Dividendes en espèces déclarés) ÷ Bénéfice net
= ( – ) ÷
=
2 Ratio de marge bénéficiaire = 100 × Bénéfice net ÷ Chiffre d’affaires net
= 100 × ÷
=
3 Ratio de rotation de l’actif = Chiffre d’affaires net ÷ Total de l’actif
= ÷
=
4 Ratio d’endettement financier = Total de l’actif ÷ Total des capitaux propres (déficit) des actionnaires de HP
= ÷
=
5 g = Taux de rétention × Ratio de marge bénéficiaire × Ratio de rotation de l’actif × Ratio d’endettement financier
= × × ×
=
Taux de croissance du FCFE (g) impliqué par le modèle à une seule étape
g = 100 × (Valeur boursière des actions0 × r – FCFE0) ÷ (Valeur boursière des actions0 + FCFE0)
= 100 × ( × – ) ÷ ( + )
=
où:
Valeur boursière des actions0 = la valeur marchande actuelle de HP actions ordinaires (en millions de dollars américains)
FCFE0 = l’année écoulée Flux de trésorerie disponible HP par rapport aux capitaux propres (en millions de dollars américains)
r = taux de rendement requis sur les actions ordinaires HP
Année | Valeur | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 et suivants | g5 |
où:
g1 est impliqué par le modèle PRAT
g5 est impliqué par le modèle à une seule étape
g2, g3 et g4 sont calculés à l’aide d’une interpolation linéaire entre g1 et g5
Calculs
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=