Dans les techniques d’évaluation des flux de trésorerie actualisés (DCF), la valeur de l’action est estimée sur la base de la valeur actualisée d’une certaine mesure des flux de trésorerie. Le ratio flux de trésorerie disponible sur capitaux propres (FCFE) est généralement décrit comme les flux de trésorerie disponibles pour le détenteur de capitaux propres après les paiements aux détenteurs de titres de créance et après avoir pris en compte les dépenses nécessaires au maintien de la base d’actifs de l’entreprise.
Espace pour les utilisateurs payants
Essayer gratuitement
Constellation Brands Inc. pages disponibles gratuitement cette semaine :
- État des résultats
- Analyse des ratios de liquidité
- Ratios d’évaluation des actions ordinaires
- Valeur d’entreprise (EV)
- Ratio valeur d’entreprise/EBITDA (EV/EBITDA)
- Rapport prix/FCFE (P/FCFE)
- Modèle d’actualisation des dividendes (DDM)
- Ratio de rotation de l’actif total depuis 2005
- Ratio cours/bénéfice net (P/E) depuis 2005
- Cumul des régularisations
Nous acceptons :
Valeur intrinsèque du stock (résumé de l’évaluation)
Constellation Brands Inc., prévision du flux de trésorerie disponible par rapport aux capitaux propres (FCFE)
en milliers de dollars américains, à l’exception des données par action
Année | Valeur | FCFEt ou valeur terminale (TVt) | Calcul | Valeur actualisée à |
---|---|---|---|---|
01 | FCFE0 | |||
1 | FCFE1 | = × (1 + ) | ||
2 | FCFE2 | = × (1 + ) | ||
3 | FCFE3 | = × (1 + ) | ||
4 | FCFE4 | = × (1 + ) | ||
5 | FCFE5 | = × (1 + ) | ||
5 | Valeur terminale (TV5) | = × (1 + ) ÷ ( – ) | ||
Valeur intrinsèque de CBI actions ordinaires | ||||
Valeur intrinsèque de CBI ’action ordinaire (par action) | ||||
Cours actuel de l’action |
D’après le rapport : 10-K (Date du rapport : 2022-02-28).
Démenti!
L’évaluation est basée sur des hypothèses standard. Il peut exister des facteurs spécifiques pertinents pour la valeur de l’action et omis ici. Dans ce cas, la valeur réelle du stock peut différer considérablement de l’estimation. Si vous souhaitez utiliser la valeur intrinsèque estimée de l’action dans le processus de prise de décision d’investissement, faites-le à vos risques et périls.
Taux de rendement requis (r)
Hypothèses | ||
Taux de rendement de LT Treasury Composite1 | RF | |
Taux de rendement attendu du portefeuille de marché2 | E(RM) | |
Risque systématique lié à CBI actions ordinaires | βSTZ | |
Taux de rendement requis sur les actions ordinaires de CBI3 | rSTZ |
1 Moyenne non pondérée des rendements des offres sur tous les bons du Trésor américain à coupon fixe en circulation qui ne sont ni échus ni remboursables par anticipation dans moins de 10 ans (indicateur du taux de rendement sans risque).
3 rSTZ = RF + βSTZ [E(RM) – RF]
= + [ – ]
=
Taux de croissance du FCFE (g)
D’après les rapports : 10-K (Date du rapport : 2022-02-28), 10-K (Date du rapport : 2021-02-28), 10-K (Date du rapport : 2020-02-29), 10-K (Date du rapport : 2019-02-28), 10-K (Date du rapport : 2018-02-28), 10-K (Date du rapport : 2017-02-28).
2022 Calculs
1 Taux de rétention = (Bénéfice net (perte nette) attribuable à CBI – Dividendes déclarés) ÷ Bénéfice net (perte nette) attribuable à CBI
= ( – ) ÷
=
2 Ratio de marge bénéficiaire = 100 × Bénéfice net (perte nette) attribuable à CBI ÷ Revenu
= 100 × ÷
=
3 Ratio de rotation de l’actif = Revenu ÷ Total de l’actif
= ÷
=
4 Ratio d’endettement financier = Total de l’actif ÷ Total des capitaux propres de la CBI
= ÷
=
5 g = Taux de rétention × Ratio de marge bénéficiaire × Ratio de rotation de l’actif × Ratio d’endettement financier
= × × ×
=
Taux de croissance du FCFE (g) impliqué par le modèle à une seule étape
g = 100 × (Valeur boursière des actions0 × r – FCFE0) ÷ (Valeur boursière des actions0 + FCFE0)
= 100 × ( × – ) ÷ ( + )
=
où:
Valeur boursière des actions0 = la valeur marchande actuelle de CBI actions ordinaires (US$ en milliers)
FCFE0 = l’année dernière Flux de trésorerie disponible de la CBI par rapport aux capitaux propres (US$ en milliers)
r = le taux de rendement requis sur les actions ordinaires de CBI
Année | Valeur | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 et suivants | g5 |
où:
g1 est impliqué par le modèle PRAT
g5 est impliqué par le modèle à une seule étape
g2, g3 et g4 sont calculés à l’aide d’une interpoltion linéaire entre g1 et g5
Calculs
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=